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Abstract

We present a detailed description of a theory and a program called 3P. ‘‘3P’’ stands for periodicity, planarity, and pixel. The 3P pro-
gram is based on the intrinsic periodic correlations between residual dipolar couplings (RDCs) and in-plane internuclear vectors, and
between RDCs and the orientation of peptide planes relative to an alignment tensor. The program extracts accurate rhombic, axial com-
ponents of the alignment tensor without explicit coordinates, and discrete peptide plane orientations, which are utilized in combination
with readily available phi/psi angles to determine the three-dimensional backbone structures of proteins. The 3P program uses one align-
ment tensor. We demonstrate the utility and robustness of the program, using both experimental and synthetic data sets, which were
added with different levels of noise or were incomplete. The program is interfaced to Xplor-NIH via a ‘‘3P’’ module and is available
to the public. The limitations and differences between our program and existing methods are also discussed.
Published by Elsevier Inc.
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1. Introduction

Since the end of the last decade, residual dipolar cou-
plings (RDCs) have proved their utility in a number of dif-
ferent areas, including the validation of NMR and X-ray
structures [1,2]; direct refinement of structures using dis-
tance, torsion angle and RDC restraints [3–7]; direct struc-
ture determination with two alignment tensors [8]; and
protein folding [8–12]. Since RDCs contain information
about the orientation of internuclear bond vectors in rela-
tion to the alignment tensor, the RDC constraints are inde-
pendent from one another.

A caveat in the use of RDCs in the direct refinement
protocol is the degeneracy problem [1]. In general, any ori-
entations of a bond vector along a cone about the principle
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alignment tensor axis and its inversion give rise to the same
RDC value [7]. Consequently, the continuum of possible
orientations represented by the cones leads to an extremely
large number of local minima. These multiple minima
make global structure determination by a simulated
annealing protocol in which only RDCs are the main
source of restraints impractical.

Using peptide planes as structural building units has
been reported [13–15]. The solid-state NMR method devel-
oped mainly by Opella et al. yields two polar angles, which
are not sufficient to specify the orientation of a plane [14].
To overcome this insufficiency, they utilized the Rama-
chandran energy of phi and psi angles to discern the plane
orientations [14]. The approach of Quine and Cross applied
an elegant scheme that ‘‘connects the dots’’ of backbone
atom positions and used dipolar and 15N chemical shift
data to reduce the number of possible orientations of a
biplane to four [16]. Mueller et al. used peptide planes as
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a unit to interpret RDC data and to refine an existing
NOE-based structure [17,18]. Hus et al. employed the con-
cept of a chiral motif (a peptide plane followed by a tetra-
hedral center) and two alignment tensors to derive the
backbone structure of ubiquitin [8].

Opella’s group reported observations of a ‘‘dipolar
wave,’’ in which dipolar couplings measured in both solid-
and solution-state NMR show sinusoidal oscillations when
plotted against residue numbers in a-helical peptides [19–
22]. Dipolar waves have been used to derive the orientation
information of alignment tensor coordinates in relationship
to the molecular frame using an empirical fitting function
[20–22] or an exact analytical expression (RDC–periodicity
correlation) [23,24]. The information that can be obtained
from dipolar waves is intriguing. The dipolar waves pro-
vide a direct correlation between structures and experimen-
tally measured dipolar couplings or RDCs from respective
fully/partially aligned samples. In addition to the RDC–
periodicity correlation, the RDCs and bond vectors of a
peptide plane are also periodically correlated (RDC–
planarity correlation) [25]. Both the RDC periodicity and
planarity correlations (RDC–PP correlations) provide
restraints to define peptide plane orientations with three
angles (Fig. 1): the tilt angle d; the phase angle q of the
peptide plane normal vector; and the pitch angle c of an
in-plane bond vector in regular secondary-structure regions
[25].

The intuitive periodicity correlation between a regular
secondary structure and an RDC vanishes in non-regular
secondary-structure regions. Nevertheless, the correlation
between specific peptide plane orientations and RDCs
can be established with the RDC–PP correlations comple-
mented by readily available phi/psi dihedral torsion angles.
The combined use of the RDC–PP correlations and phi/psi
Fig. 1. (a) The definition of the peptide plane orientation tilt (dn), phase
(qn), and pitch (cn). The orientation of the peptide plane normal vector n̂ is
determined by the tilt and phase in the usual spherical coordinate sense
according to n̂ ¼ ðsin dn cos qn; sin dn sin qn; cos dnÞ. The pitch is the clock-
wise rotation of the bond vector r̂AB about n̂, which determines the pitch of
a helix at that plane. (b) An a-helix backbone structure defined by
consecutive peptide plane orientations. The plane normal vectors, which
define the plane orientations, are indicated with red arrows.
angle predictions leads to determination of peptide plane
orientations. These oriented peptide planes are subjected
to constraints of the covalent peptide bond lineage. In
essence, peptide plane orientations O(d,q,c) are used as
the protein’s structural ‘‘pixels,’’ analogous to the com-
puter graphic pixels (contrast, brightness, and hue), and
form the basis for determining backbone structures of
proteins.

2. Theory

2.1. Periodicity and plane orientation in periodical regular

secondary structures

Peptide plane normal vectors can be treated as pseudo-
bond vectors, whose orientation varies periodically, similar
to the peptide plane orientation in regular secondary struc-
tures. A correlation exists between the periodic behavior of
these normal vectors and the periodicity in the RDC wave.
The RDC–PP correlations encompass the intricate correla-
tions among the RDC periodicity, secondary-structure
periodicity, and periodicity of the bond vectors within the
peptide plane [25]. These correlations can be exploited once
the peptide plane normal vectors are expressed in terms of
three angles, namely the phase q, tilt d, and pitch c angles
(Fig. 1a). The peptide plane orientation defined with the
RDC–PP correlations represents a unifying principle that
allows the unambiguous interpretation of RDC data
[13–16,26].

Bond vector orientations directly correlate with their
RDCs when the orientation of the alignment frame in rela-
tionship to the molecular frame is known [23,24]. The
extraction of orientational information from the RDCs is
made possible by the explicit analytical equation (Eq. (1))
that expresses the RDC, DAB, in relation to the bond
vector in the alignment tensor coordinates [24]. When
considering structural elements of known types, such as
an a-helix, or a duplex in nucleic acids, DAB can be
expressed in terms of the bond vector orientation
(di,qi) in relationship to a secondary-structure axis that is
oriented at angles (H,U) with respect to the alignment
frame [23,24].

DAB;i ¼ C1ðH;U; diÞ cos 2qi þ C2ðH;U; diÞ sin 2qi

þ C3ðH;U; diÞ cos qi þ C4ðH;U; diÞ sin qi

þ C5ðH;U; diÞ ð1Þ

Eq. (1) is universally applicable to any periodic structural
element. In this equation, qi = (q1 + 2p(i � 1)/T) is the
phase of the bond vector of the ith residue, which is related
to the phase of the bond vector of the first residue, q1, and
the period T � 3.6 residues/turn for the a-helix (Fig. 1b)
and T � 2 residues/turn for a b-strand. The slant angle di

is the angle the bond vector AB makes with the
secondary-structure element axis, and the coefficients
Ck = Ck (H,U,di) are functions of both the helical axis
orientation and dI [24]. We use subscript index i to indicate
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Fig. 2. The relationship between the peptide plane and residue numbering
i, i + 1. All atoms in the figure lie in a plane by the first order
approximation, which we identify by the two residue numbers whose
backbone atoms form the peptide bond. The residue plane i refers the
peptide plane consisting of amino acid motifs, carbonyl group and Ca of
residue i, and the amino group and Ca of the residue i + 1.
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the amino acid number and subscript index j to indicate the
peptide plane number throughout. The index j on Ca, as in
expression r̂CaHa

j , refers to the bond vector between peptide
planes j and j + 1. The residue plane (rp) number is defined
as shown in Fig. 2.

In order to extract a peptide plane orientation in a struc-
tural segment from RDCs, one first needs to consider the
geometric relationships among the bond vectors within
the plane. For example, if the jth peptide plane orientation
is expressed by its normal vector n̂j, then the normalized
HN bond vector r̂HN

j (defined H fi N) is related to the nor-
malized CaC 0 bond vector r̂CaC0

j (defined Ca fi C 0) by a
rotation of g = 56.5� about n̂j, using the right-hand rule.
The angular relation g between these two bond vectors
(as well as the analogous relationships between r̂CaC0

j , r̂NC0

j

(116.9�), and r̂NH
j , r̂CaN

j (119.5�)) is a property of covalent
peptide geometry [27]. When the alignment tensor Z-axis
coincides with the peptide plane normal vector, the trans-
formation between the two bond vectors r̂CaC0

j and r̂HN
j is

given by simply:

r̂HN
j ¼ Rn̂ðgÞr̂CaC0

j ¼ RbZ ðgÞr̂CaC0

j ð2Þ

When the peptide plane normal does not coincide with the
Z-axis, the rotation about the peptide plane normal is de-
fined by Eq. (3):

Rn̂iðgÞ ¼ R�1bX ðaÞR�1

�bY ðbÞRbZ ðgÞR�bY ðbÞRbX ðaÞ ð3Þ

The rotation matrices RbX ðaÞ, R
�bY ðbÞ, and RbZ ðgÞ needed to

express Rn̂iðgÞ and illustration figures are shown in Supple-
mentary material.

The geometric relationship between bond vectors lying
in the peptide plane, together with Eq. (3), can be used to
express the RDCs as a function of the peptide plane normal
vector. Any peptide plane bond vector AB in a structure
element aligned along the Z-axis can be expressed in terms
of the tilt angle dn and phase angle qn of the peptide plane
normal vector, and the pitch angle cn of the bond vector in
the peptide plane as shown in Fig. 1a (for clarity, the pep-
tide plane subscript j has been omitted from dn, qn, and cn

in the equations that follow).
r̂AB;sec:str:
j ¼ RZðqnÞR�1

n ðcnÞRY ðdn � p=2ÞbZ
¼ RZðqnÞ½RY ðdnÞRZðcnÞR�Y ðdnÞ��1

� RY ðdn � p=2ÞbZ ð4Þ

In Eq. (4), we have used Eq. (3) to express Rn(g) in terms of
Cartesian rotations. The initial rotation about bX from Eq.
(3) is equal to the identity matrix, since RY ðdn � p=2ÞbZ is al-
ready in the XZ-plane. Multiplying out the matrices in Eq.
(4) yields an expression for any bond vector AB in terms of
the peptide plane orientation angles dn, qn, and cn:

r̂AB;sec:str:
j ¼

� cos dn cos qn cos cn � sin qn sin cn

� cos dn sin qn cos cn þ cos qn sin cn

sin dn cos cn

0
B@

1
CA ð5Þ

For a structure element referenced relative to (H,U), which
can be an arbitrary axis, or a principle alignment axis, the
bond vector orientation r̂AB

j with respect to the alignment
frame is given by:

r̂AB
j ¼ RZðUÞRY ðHÞr̂AB;sec:str:

j ð6Þ

By combining this expression for the bond vector with the
general RDC Eq. (1), we obtain an expression for the
RDCs in terms of the orientation of the peptide plane, tilt
dn, phase qn, and pitch cn:

DAB
j ðH;U;dn;qn;cnÞ
¼Dafð�1þ 3R=2Þ½sinUðcosdn sinqn coscn� cosqn sincnÞ
� cosHcosUðcosdn cosqn coscnþ sinqn sincnÞ
þ sinHcosU sindn coscn�2�ð1þ 3R=2Þ
� ½�cosUðcosdn sinqn coscn� cosqn sincnÞ
� cosH sinUðcosdn cosqn coscnþ sinqn sincnÞ
þ sinH sinU sindn coscn�2þ 2½cosH sindn coscn

þ sinHðcosdn cosqn coscnþ sinqn sincnÞ�2g ð7Þ

Eq. (7) correlates the RDCs of bond vectors in a given pep-
tide plane, as well as sequential peptide plane RDCs, to their
plane orientations. Therefore, this equation makes it possi-
ble to extract plane orientations in the alignment tensor axis
system from RDCs of coupled nuclei in a peptide plane.

2.2. Tetrahedral centers

The tetrahedral configuration around Ca represents
well-defined chemical geometry. The geometry of the tetra-
hedral center, and thus its angular relationship to the pep-
tide planes, is well conserved throughout a protein
structure. In the case of a 0.78 Å resolution X-ray crystal
structure of the 26.7 kDa subtilisin of Bacillus lentus

(Accession code: 1GCI) [28], the mean angle T NCaC0

between N, Ca, and C 0 yields a narrow distribution, with
standard deviation (STD) of only 2.4�. Thus, we used this
well-conserved geometry to correlate the RDCs associated
with the tetrahedral center Ca to the flanking peptide
planes, and applied it to resolve the ambiguity in plane
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orientations due to the possible multiple minima from the
grid search, and to verify and refine the plane orientations.
In the actual implementation of the 3P method, the angle
of the tetrahedral geometry is set to be 109 ± 8� to accom-
modating possible larger deviation form the norm and
experimental errors in RDC measurements.
2.3. Fourfold degeneracy

A peptide plane followed by a tetrahedral center consti-
tutes a chiral structure element [8,24]. Interpreting RDCs in
the frame of a chiral structural element greatly reduces the
degeneracy to the four subsets of orientations for each pep-
tide plane. These four possible orientations in terms of
(d,q,c) can readily be computed by searching the minima
in the full (d,q,c) space using the following equation:

RMSD ¼
Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1fiðDj

iðexpÞ � Dj
iðcalcÞÞ2=m

q
n

ð8Þ

where m and n are the numbers of different types of one-
bond RDCs and the number of residue planes, respectively;
fi is the normalizing factor with respect to the NH RDC;
Dj

iðexpÞ and Dj
iðcalcÞ are the experimental RDC and the

RDC calculated using Eq. (7), respectively. These four pos-
sible orientations are (H,U), (p � H, 2p � r), (p � H,
p � U), and (H,p + U) [24]. Fig. 3 illustrates the four pos-
Fig. 3. An illustration of four possible rp orientations that satisfy both the
in-plane (NH, CaC 0, NC) and the tetrahedral (CaHa) RDCs of the four
possible orientations of rp 29 of ubiquitin are drawn in (d,q,c). These
possibilities were computed using Eq. (8) and experimental RDCs in the
full (d,q,c). For any one of the four orientations, the orientations of
the proceeding and the following peptide plane can be easily identified by
the tetrahedral angle. For clarity, the four possible orientations are plotted
in black and their projections on three planes are plotted in light green,
cyan, and magenta.
sible orientations of residue plan 29 of ubiquitin in the
(d,q,c) space using experimental data. Furthermore, the
orientations of the proceeding and following planes can
be selected based on the tetrahedral angle centered at Ca.
Therefore, theoretically, a peptide backbone structure can
be calculated, given a complete set of RDCs, three in-plane
and one tetrahedral, from only one alignment tensor. The
detailed correlation expression in the vector space is given
in Supplementary material.
2.4. phi/psi angle supplements

Although in theory the in-plane and tetrahedral RDCs
are sufficient to define four discrete orientations of a pep-
tide plane, in practice, the four subsets of peptide plane ori-
entations may not be so distinctly defined due to shallow
minimum and noisy data. Instead of using the second set
of RDCs from a non-correlated tensor, we resort to pre-
dicted phi/psi angles, which are readily available once
backbone assignments are completed [29]. Combining ten-
sors from solid-state NMR measurements with phi/psi
restraints from databases was pioneered by Opella’s group
[14]. Restrained by phi/psi angles, a consistent orientation
between the two can usually be identified. Using phi/psi
torsion-angle restraints as an aid for determining backbone
structures has an obvious advantage over other methods
that may require using of multi-alignment tensors.
2.5. Determining Da and R values

The magnitude Da and rhombicity R values of an align-
ment tensor are prerequisites for interpreting RDC data. In
addition, the accuracy of Da and R values in interpreting
and utilizing RDCs is critical in a structure determination
when RDC data is the main source of restraints. Several
methods for deriving Da and R values from RDC data have
been reported. Trial-and-error approaches that employ
simulated-annealing [30] and the singular value decomposi-
tion (SVD) [31] methods were the first two methods used to
extract Da and R values from RDC data, but both methods
required pre-existing structural coordinates. The extended
histogram method (EHM) [32] and the maximum likeli-
hood method (MLM) [33] are two alternatives that do
not require pre-existing, three-dimensional coordinates,
but the former is less accurate and the latter has limited
accuracy when dealing with RDCs of anisotropically dis-
tributed spin pairs. The 3P method uses the RDC–PP cor-
relations in the regions with high information content (IC),
usually regular secondary-structure elements, to derive Da

and R values for a protein under the rigid-body assump-
tion. This method becomes feasible because, in the region
with both high RDC and phi/psi IC, or in a periodical
structure element like an a-helix, the correlation between
RDC and the orientation of spin pairs in the peptide planes
is defined explicitly, eliminating a large number of false
minima that would otherwise be encountered when the
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correlation between spin-pair orientation and RDC is con-
sidered in a non-concerted fashion.

3. Methods

3.1. Procedures

The implementation and overall outline of the 3P pro-
gram are illustrated in Fig. 4. The 3P program was coded
in Python and C/C++, and run either in a single CPU
mode or on a multiple-CPU Linux cluster (Dell Poweredge
2650), using a parallel computing mechanism (Message
Passing Interface (MPI)). The running script, written in
Python, is less than 100 lines long, and a sample script is
provided in Supplementary material.

To extract the peptide plane orientations, we used Lev-
mar, Levenberg–Marquardt nonlinear least-squares algo-
Initiation Module
in_PhiPsi    
in_RDC
set_PhiPsi_ICs
set_ResRDC_ICs

DaR Module
seg_DaR

Fitting Module
seg_DRG
seg_Fit

seg_Link
output_pdb

chk_rdc (interactive) PhiPsi_proof

Good

Bad

Fig. 4. The flow chart of the 3P program. 3P consists of three modules:
initiation, DaR, and fitting. The initiation module mainly consists of four
functions, two for handling input RDC data and phi/psi angles, in_RDC
and in_Phi/Psi, respectively, and two, set_ResRDC_ICs and set_PhiPsi_ICs,
for registry of RDC and Phi/Psi ICs for individual residues, respectively.
The DaR module calls function seg_DaR to calculate the values of the
axial and rhombic components, Da and R, of the alignment tensor based
on the segments with high ICs. The third module, the fitting module,
which constitutes the core of the 3P program, has five main functions:
seg_DRG estimates anchor plane orientation (D stands for d, R for q, G

for c); the seg_fit function performs calculations of peptide plan
orientations for segments. In the case where raw phi/psi angles from
the output of TALOS are directly used for the fit, the program proceeds
with the Phi/Psi_proof procedure to detect and correct erroneous torsion
angle predictions based on RMSDs in RDC of fit segments. Currently,
the Phi/Psi_proof is written as a standing alone module and is used
interactively by a user to perform the phi/psi error proof (Supporting
materials). In the case where phi/psi angles are error proofed, the 3P
program takes the input RDC and phi/psi angles to generate backbones
of segments, which are linked by the seq_link function and the final
backbone structures are written in PDB format by the output_pdb
function, and the whole calculations are fully automated.
rithms with bound constraints in C/C++ (http://
www.ics.forth.gr/~lourakis/levmar) to best fit RDC data
to Eq. (7). Levmar is the GPL native ANSI C implementa-
tion of the Levenberg–Marquardt optimization algorithm,
available also in C++. Both unconstrained and con-
strained (under linear equations and box constraints)
Levenberg–Marquardt variants are included. The Leven-
berg–Marquardt (LM) algorithm is an iterative technique
that finds a local minimum of a function that is expressed
as the sum of squares of nonlinear functions. It has become
a standard technique for nonlinear least-squares problems
and can be thought of as a combination of steepest descent
and the Gauss–Newton method. Moreover, Levmar is the
most compatible with Python language. Overall, the calcu-
lation is accomplished in several steps, discussed in the
modules that follow. For all fittings, the calculations start
with randomly generated initial plane orientations.

3.2. The initiation module

This module takes RDC and phi/psi torsion angles from
TALOS or other sources, if available, as inputs to calculate
the Information Content IC for each peptide plane. IC is
used for both dividing the peptide chain into segments
and defining anchor planes and anchor segments (see next
section). Five one-bond RDCs per amino acid (1DNH,
1DCaC0 ,

1DNC;0 ,
1DCaHa , and 1DCaCb

) are usually measured,
and each one is counted as an IC score of 0.2. An RDC
IC of 1.0 is assigned if all five RDCs are available for a
given plane. The phi/psi IC is assigned based on the stan-
dard deviation of the torsion angles predicted by the
TALOS output. For STDs of both phi/psi that are 10�,
20�, 30�, 40�, 50�, and 60�, the phi/psi ICs of 1.0, 0.8,
0.6, 0.4, 0.2, and 0.0, respectively, are assigned. Therefore,
the IC value is an indicator of how much information is
available for determining the orientation of each peptide
plane along a peptide chain.

Two types of segments are used in the 3P program, the
anchor segment and non-anchor segment. Anchor seg-
ments are usually a stretch of covalently connected peptide
planes with the highest overall ICs and the anchor plan is
the plan with the highest IC values. They break off at res-
idues with low ICs. The lengths of these anchor segments
may vary from 10 to 30 peptide planes. The anchor seg-
ment is usually in a regular secondary-structure region,
where RDCs are more easily measured and phi/psi are bet-
ter predicted. Accurate Da and R values of the overall pro-
tein, with a rigid-body assumption, can be derived readily
from the anchor segment and used for the subsequent cal-
culation of the protein backbone structure (see the follow-
ing section). The anchor plane can also be derived readily
from the anchor segment. Further, the two anchor planes
that have the highest ICs in a segment, are assigned for
each non-anchor segment. Since anchor planes have the
highest ICs, they serve as a starting point and a checkpoint
to verify chain propagation in the calculation of a back-
bone conformation. The orientations of the anchor planes

http://www.ics.forth.gr/~lourakis/levmar
http://www.ics.forth.gr/~lourakis/levmar
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serve as fixed starting points from which the orientations of
the preceding and following planes are calculated sequen-
tially to simultaneously satisfy periodicity-planarity corre-
lations expressed in Eq. (7) and the phi/psi torsion-angle
restraints. The orientations of the anchor/non-anchor
planes are determined using the nonlinear least-squares
algorithm with bound constraints, starting from randomly
generated initial orientations to best fit the RDC data. The
conformations of segments are derived so that the RMSD
in the RDC for anchor planes, as well as the overall RMSD
differences between the experimental and the back-calcu-
lated RDC, are comparable to the experimental errors.

3.3. DaR module

The Da, and R values are most accurately determined by
using an empirical weighting of the RDC data in the
alignment fit, in which the 1DCaC0 data is scaled by a factor
of 2.5, 1DNC0 data by a factor of 4.2, and 1DCaCb

by a factor
of 0.3 (or, alternately, 1DCaHa by a factor of 0.1), relative to
1DNH. The empirical values originate from the relative
gyromagnetic ratios, internuleic distances, and the relative
expected measurement errors. We find the accuracy of our
results comparable to those using published methods, such
as EHM and MLM [32,33]. This module can be bypassed if
Da and R values are already accurately known.

To extract Da and R values, the module randomly
chooses a maximum of three segments of the peptide chain
with the highest ICs that will best fit to the RDC data. For
each segment, this module yields a set of Da and R values
starting from a number of randomly generated initial ori-
entations for the anchor planes. The number of the ran-
domly generated initial orientations chosen is a
compromise between the best RMSD in the RDC and
the highest computing speed, and the default number is
20. Among the 20 sets of Da and R, only the three sets,
which give the lowest RMSD in the RDC, comparable to
the measurement error, are chosen. In total, nine sets of
Da and R values are extracted from the three segments,
and the mean values of the three sets with the lowest
RMSD in the RDC are taken as the Da and R values.

3.4. The fitting module

After Da and R are obtained, this module determines the
backbone conformations of segments and links the seg-
ments together to derive the overall backbone structures
of the proteins. The first step in this process is to determine
the orientations (dn,qn,cn) of the anchor peptide planes,
where n is the number of anchor planes, for each segment
by fitting Eq. (7) to RDCs with restraints of phi/psi angles
and the fixed Da and R. Out of 20 calculations started from
randomly generated initial orientations, three possible
plane orientations, On(dn,qn,cn), for each anchor plane
are accepted based on the RMSD comparable to measure-
ment errors. These anchor plane orientations are used
simultaneously as initial planes to generate preceding/sub-
sequent plane orientations by searching for minimums in
RMSDs in RDC in On(dn,qn,cn) space. There are four pos-
sible plane orientations that satisfy the both the in-plane
and the tetrahedral RDCs (Fig. 3). For each segment, the
second anchor plane with the higher residue number index
is used as a check to verify the conformation of the seg-
ment, by comparing it with that of the same plane in the
segment using criteria comparable to experimental errors.
The calculation accepts three conformers for each segment
that give the best RMSD in the RDC. All three conformers
are then used to pair with those possible conformers of the
preceding/subsequent segments in the next round of
calculations.

In the next step, the segments are linked together to
build the protein backbone structure. Because there are,
by default, three accepted conformers for each segment,
calculations have to be performed for each possible combi-
nation that may lead to one of the 3N structures, where N is
the number of fitting segments. For cutinase, which is
divided into nine segments and used as a test case in the fol-
lowing section, the calculation would have yielded
39 = 19,683 possible backbone structures. To speed up
the calculation, the 3P program randomly pairs the
accepted segments that are long enough to generate a set
of the backbones with the best RMSDs in the RDC. The
strict requirements for the normal covalent chemical geom-
etry at the joint tetrahedral Ca and a global fit of possible
backbone structures to the RDC–PP correlation and phi/
psi restrictions eliminate the fourfold degeneracy associ-
ated with a chiral motif of a known structure [24]. Specifi-
cally, the program ensures a good tetrahedral angle, T NCaC0 ,
and the best fit to the experimental 1DCaHa (see Section 2) at
a joint between two segments (Fig. 5). The 3P program uses
the algorithm we refer to as Soft Link to link two continu-
ous segments by imposing sets of the angles, and dihedral
and tetrahedral restrictions of the linker regions on the fit-
ting to RDC data. By default, the length of a linker region
spans six residues, three on each side of a joint, but it may
be adjusted by the user. The length of a linker region may
be adjusted by users in the running script in the program.
The default of six is chosen for the balance between the
highest computing speed and the best fit. Finally, the back-
bone structures generated from 3P are then regularized
using a ‘‘3P’’ module interfaced with Xplor-NIH to add
side-chain atoms and remove possible van der Waals viola-
tions [34].

4. Results

4.1. Determination of Da and R

We tested the robustness of the program for determining
Da and R values using simulated sets of data for the follow-
ing scenarios: three realistic noise levels embedded in the
simulated data, which are also compounded with different
rhombic component values from 0.1 to 0.67. The RDC
and phi/psi angle data were generated based on the



Fig. 5. An illustration of connecting two segments. There are four possible subsets of orientations for each segments, drawn in C 0, N, and Ca of the
backbone for clarity: (H,U), (H,p + U), (H,�U), (p � H, 2p � U), where (H,U) is an arbitrary reference in a spherical coordinate axis. When one
randomly selects a segment, for example, Seg 1 with the orientation of (H,U), there are another four possible orientations for the following segment, Seg 2.
The strict requirement of the co-valent tetrahedral geometry at Ca, \NCaC 0, 109 ± 8�, eliminates other three possibilities in (b), (c), and (d) by the
program.

Table 1
Calculate Da and R values

R (target) Da R

Added error: rHN = 0.50 Hz, rCaC ¼ 0:25 Hz, rNC = 0.25 Hz,

rCaCb ¼ 0:25 Hz
0.00 �14.982 ± 0.083 0.011 ± 0.007
0.10 �14.996 ± 0.081 0.100 ± 0.013
0.30 �15.030 ± 0.079 0.299 ± 0.009
0.50 �15.038 ± 0.103 0.498 ± 0.010
2/3 �15.054 ± 0.095 0.660 ± 0.005

Added error: rHN = 0.75 Hz, rCaC ¼ 0:38 Hz, rNC = 0.38 Hz,

rCaCb ¼ 0:38 Hz
0.00 �14.980 ± 0.114 0.018 ± 0.011
0.10 �15.013 ± 0.134 0.102 ± 0.017
0.30 �15.037 ± 0.128 0.298 ± 0.017
0.50 �15.066 ± 0.125 0.493 ± 0.019
2/3 �15.056 ± 0.132 0.656 ± 0.014

Added error: rHN = 1.0 Hz, rCaC ¼ 0:5 Hz, rNC = 0.5 Hz, rCaCb ¼ 0:5 Hz
0.00 �15.001 ± 0.182 0.022 ± 0.010
0.10 �15.026 ± 0.161 0.102 ± 0.016
0.30 �15.041 ± 0.163 0.304 ± 0.018
0.50 �15.097 ± 0.168 0.497 ± 0.023
2/3 �15.080 ± 0.178 0.650 ± 0.021

Note: The cutinase protein alignment parameters from a Monte-Carlo
simulation of 20 noisy RDC data sets with 20% missing RDC for each
scenario, generated from a target alignment of Da = �15.0 with a number
of different target rhombicities. Gaussian distributions of errors with tail
cutoff at 3rAB were added to the simulated data.
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cutinase (Accession code: 1CEX) X-ray structure. The
results are tabulated in Table 1. To add noise to the data,
we used both the Gaussian and random distributions with
the distribution tails cut off at 3rAB and rAB, respectively.
For a known a-helix element in a protein structure, accu-
rate Da and R values can be accurately derived with the
restraint of the RDC–periodicity correlation alone [24].

4.2. Backbone structures of non-regular secondary motifs

Monte-Carlo simulations of the effect of errors in both
RDC and phi/psi angles superimposed on the structure
were performed by generating noisy data sets of different
degrees and with various error ranges for phi/psi torsion
angles for a short peptide that consists of seven peptide
planes. We tested scenarios using u/w angle error ranges
of ±45�, Da = �10, with R = 1/3, using what we refer to
here as standard errors (HN, CaC 0, NC 0, and CaHa RDCs
of 0.5, 0.25, 0.25, and 1.0 Hz, respectively). Out of the 100
calculate structures using the noisy dataset, the 77 accepted
structures gave a backbone RMSD of 0.18 Å to the origi-
nal structure based on which the noisy dataset was gener-
ated; increasing all errors by a factor 1.5 resulted in 74
accepted structures with RMSD of 0.25 Å; increasing the
errors by a factor of 2 yielded 34 accepted structures with
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an RMSD of 0.28 Å. Therefore, most of the increase in the
structural RMSD resulted from increasing the standard
errors by a factor of 1.5, with a smaller increase occurring
beyond 1.5, although the convergence rate dropped from
�3/4 to �1/3.

Monte-Carlo simulations of the effect of the rhombicity
on the accuracy of the fit non-periodic backbone structure
were performed by generating 100 noisy data sets (using
the standard errors) allowing phi/psi angle error ranges
of ±45� in the fit, Da = �10, with R = 2/3, 1/3, and 0.
These simulations were repeated for a number of different
orientations in the alignment tensor, and the results are
shown in Table 2. The effect of the rhombicity on the
RMSD of the calculated structures to the original structure
is small, with RMSDs = 0.16 Å and 0.17 Å for R = 2/3 and
R = 1/3, respectively, but the effect on convergence is
noticeable. Only in the axially symmetrical case with
R = 0, where the angular IC of the RDCs is less than those
in axially non-symmetrical cases, does the RMSD increase
appreciably, to 0.25 Å. These calculations illustrate that,
with a complete set of RDC data measured in one medium
and phi/psi torsion angle restraints, non-regular secondary
backbone structures of small fragments can be determined
with reasonable accuracy.
Fig. 6. The effect of the phi/psi error ranges with different noisy RDC data
sets on the RMSDs of the cutinase protein backbone structures relative to
that of the original X-ray crystal structure (Accession code: 1CEX). The
Gaussian error cutoffs tail at 3rAB, whereas the randomly error cutoffs tail
at 1rAB. The error bars represent the standard deviation of RMSDs
relative to the original structure among the 10 best structures (see the text).
4.3. Effect of errors in RDC and phi/psi on the accuracy of
backbone structures of proteins

We have tested the 3P program using simulated RDC
data based on whole proteins. To test the robustness of
the program, we chose to generate simulated sets of data,
using various scenarios and the cutinase X-ray crystal
structure. We tested the cases with various levels of errors
in both RDC and phi/psi. To the RDC data we added the
Gaussian and flat random errors of 5% and 10%, with the
distribution tails cut off at 3rAB and rAB, respectively. The
noisy RDC data were further compounded with loosely
defined phi/psi angle ranges, which were set to ±15�,
Table 2
Backbone accuracy and convergencea

R Error (HN) (Hz) RDCs used

1/3 0.5 HN, CaC 0, NC0, CaH
1/3 0.75 HN, CaC 0, NC0, CaH
1/3 1.0 HN, CaC 0, NC0, CaH

0 0.5 HN, CaC 0, NC0, CaH
1/3 0.5 HN, CaC 0, NC0, CaH
2/3 0.5 HN, CaC 0, NC0, CaH

1/3 0.5 HN, CaC 0, CaHa

1/3 0.5 CaC 0, NC 0, CaHa

1/3 0.5 HN, NC 0, CaHa

1/3 0.5 HN, CaC 0, NC0

a The table show the number of accepted of fit structures from Monte-Carlo s
The magnitude of superimposed RDC errors used is indicated by the HN RDC
We tested the effects of rhombicity, errors, and types of available RDCs on th

b RMSD of accepted structures (RMSD of 10 best RDC-fit structures).
c RMSD after removing outlier from the bundle. With outlier, RMSD = 0.2
±30�, ±45�, and ±60�. In each case, out of 200 structures,
we chose 10 with the best RMSD in RDC for tallying the
statistics. We tested the utility of the program with four
Gaussian and random noisy levels, 5%, 10%, 20%, and
30% of the RDC data sets. The backbone RMSDs ranged
from 0.93 Å with 5% randomly distributed errors (Figs. 6
and 7) to about 3.0 Å with 30% Gaussian errors, while
phi/psi error ranges remain ±30� (Fig. 7), and these
RMSDs increased to 1.85 Å and 3.70 Å, respectively, when
phi/psi error ranges were set to ±60� (Fig. 7). It appears
that the phi/psi angles can be loosely restrained up to
±45� of the error range without dramatically increasing
the RMSDs of the calculated structures relative to the ori-
ginal ones (Fig. 6).
#Accepted/#total RMSDb

a 77/100 0.16 Å

a 74/100 0.25 Å

a 34/100 0.28 Å

a 72/100 0.25 Å

a 77/100 0.16 Å

a 94/100 0.17 Å

36/50 0.19 Å (0.16 Å)c

48/50 0.24 Å (0.23 Å)
37/50 0.29 Å (0.27 Å)
44/50 0.36 Å (0.30 Å)

imulations of a 7-peptide plane, non-periodic backbone segment (see text).
error, and errors in the other three types of RDCs were scaled accordingly.
e convergence and RMSDs relative to the target structure.

4 Å.



Fig. 7. The effect of superimposed errors in the RDC on the RMSDs of
the cutinase protein backbone structures relative to that of the orignial
X-ray crystal structure. The simulated RDC data were added following
different levels of noise, simulated RDC data superimposed with a
Gaussian RDC error with the cutoff at 3rAB; 7 simulated RDC data
superimposed with a random RDC error with the cutoff at rAB. In all
calculations, the error ranges for phi/psi angles were kept at ±30.

ig. 8. Structure comparison between the 3P-calculated non-regularized
ructure (red) and the X-ray crystal structure (blue, Accession code:
CEX) of cutinase with the backbone RMSD = 0.92 Å. The simulated
DC data (HN, NC, C 0Ca, CaHa, CaCb) were superimposed with 0.5 Hz
aussian error with cutoff tailed at 3rAB = 1.5 Hz, and 20% of the RDC
ere randomly removed.
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When the error ranges for phi/psi were set to ±90�, the
program yields structures with the backbone RMSD
greater than 19 Å, and the backbone structure determina-
tion becomes impractical. In practice, the standard devia-
tions of phi/psi predictions from TALOS in well-defined
regions are well under 30�, whereas the STDs of those in
regions labeled as ‘‘new’’ by TALOS are well below 60�.
The superimposed ribbon diagrams of the cutinase struc-
tures are shown in Fig. 8. It takes about 300 s to calculate
200 backbone structures of cutinase on a Dell Precision
670, a dual CPU Linux computer.

4.4. Calculating backbone structures with random incomplete
RDC data sets

We first tested the effect of incomplete RDC data sets
using fragments. Using Monte-Carlo simulation, we esti-
mated the effect of incomplete RDC data sets by randomly
removing 4 of the 28 RDCs (14%) and superimposing
errors to generate 50 noisy data sets. This process was then
repeated 10 times, using R = 1/3 and phi/psi angle ranges
of ±45�. The 10 best fits to the RDCs from each run
showed RMSDs of 0.15–0.27 Å to the original structure.
Similarly, the removal of four RDCs, all belonging to
one particular peptide plane, yielded different RMSDs,
depending on the location of the peptide plane in the
sequence: If it was at the beginning of the sequence, the
RMSD was 0.16 Å; if it was at the middle, the RMSD
was 0.27 Å.

We tested the relative importance of tetrahedral versus
in-plane RDC data. Using R = 1/3, phi/psi angle ranges
F
st
1
R
G
w

of ±45�, and the standard errors, a Monte-Carlo simula-
tion was performed on 50 runs with all tetrahedral RDCs
removed. The 10 best fits to the RDCs had an RMSD to
the original structure of 0.30 Å, which is larger than the
RMSDs of 0.27, 0.24, and 0.16 Å for the cases in which
all HN, CaC 0, and NC 0 RDCs, respectively, were removed
individually. The increase in the RMSD is largest and sim-
ilar for CaHa and HN; therefore, no a priori distinction
appears to exist between in-plane and tetrahedral RDCs
for this fitting program since these two RDCs possess
almost identical relative errors (ratio of random error to
Da). The effect of omitting the CaC 0 and NC 0 RDCs is pro-
gressively weaker, which were weighed according to the
scaling factors and practical errors, and therefore lesser
angular IC. Finally, in the case in which seven RDCs are
removed randomly from among all the RDCs, the RMSDs
ranged from 0.12 to 0.31 Å, for the 10 random selections
made.

It is noteworthy that the RDC data measured in a single
medium for three well-measured proteins, ubiquitin, GB3,
and DinI, are about 14–18% incomplete. We then tested
incomplete RDC data sets for protein cutinase using three
scenarios in which 10%, 20%, and 30% of RDC data are
randomly missing. These RDC data sets were also superim-
posed with 5% and 10% random errors. For each scenario,
we repeated the calculations using five different sets of ran-
domly incomplete data. The RMSD results are the average
of the top 10 structures for each scenario of calculations
(Fig. 9). The RMSDs are 1.26 ± 0.14 Å, 1.87 ± 0.30 Å,
and 2.41 ± 0.17 Å, respectively, for 10%, 20%, and 30%
missing RDC data superimposed with 5% random errors.



Fig. 9. The effect of incomplete RDC data on the RMSDs of the cutinase
protein backbone structures calculated by the 3P method from the
simulated RDC data superimposed with 5% random errors and different
levels (10%, 20%, and 30%) of missing RDC data. For each level of
missing data, five cutinase backbone structures are calculated with five
randomly different missing RDC data superimposed with a 5% random
error. The phi/psi error range is ±30�.
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The RMSDs increased to 1.60 ± 0.18 Å, 2.04 ± 0.28 Å,
and 2.65 ± 0.16 Å when the RDC data were superimposed
with 10% random errors in each case. In all of these calcu-
lations, phi/psi angle error ranges were set to be ±30�. In
the calculations using the incomplete RDC data sets, we
excluded data sets where all missing data are concentrated
in small regions.
Fig. 10. phi/psi error proof of the ubiquitin TALOS phi/psi angles. The RM
contradict the experimental RDC data. (a) The phi/psi angles at residue 60 w
experimental data and the back-calculated data. The phi and psi angles in th
predicted values are �89.5� ± 13.0� and �17.4� ± 10.7�, respectively. (b) For r
TALOS predicted this angle to be 87.6 ± 13.6.
4.5. Structure determination of ubiquitin, GB3 and DinI

We have tested the program using the experimental
RDC data of ubiquitin, GB3, and DinI [20]. The STDs
for phi/psi angles from the TALOS output were used as
the error range for the phi/psi restraints. One of the prac-
tical problems when using the phi/psi torsion angles from
TALOS is erroneous predictions. Roughly, 2–5% of
TALOS predictions are outside of the STDs of the true val-
ues. For this reason, we also added a module that detects
and corrects the phi/psi angles. This module checks the
consistency between possible discrete peptide plane orien-
tations derived from experimental RDC and the TALOS
phi/psi angles. When phi/psi torsion angles from TALOS
fall outside the range of possible correct phi/psi torsion
angles (as defined by the discrete possible peptide plane ori-
entations derived from the RDC–planarity correlation and
the tetrahedral geometry at Ca), the RMSD between the
experimental and back-calculated RDC increases dramati-
cally. Fig. 10 shows examples of a jump in RMSD in RDC
due to incorrect phi/psi torsion angles, residues 53 (phi)
and 60 (phi/psi). In each case, the module then calculates
possible correct torsion angles that give the RMSDs in
RDC comparable to the average of the segment. Tests on
the module show it is capable of detecting/correcting two
consecutive incorrect phi/psi torsion angles in a restraint
file, given a sufficiently large RDC IC. A detailed descrip-
tion for the phi/psi proof is provided in Supplementary
material.

The backbone RMSD of the 3P-calculated structure rel-
ative to that of the X-ray crystal structures (1UBQ) of the
ubiquitin is about 0.8 Å. We also replaced the STDs with
an error range of ±30� in the phi/psi throughout the
SDs in RDC start to jump as a result of erroneous phi/psi angles that
ere erroneous, as indicated by a jump in the RMSD in RDC between the
e crystal structure are 57.9� and 45.5�, respectively, whereas the TALOS-
esidue 53, the phi dihedral angle of the crystal structure is �82.9�, whereas



Fig. 11. Ribbon diagrams of the structure comparisons between the 3P-derived ubiquitin, GB3, and DinI (red), and their respective original X-ray crystal
structures (blue). The following residues were not included in the calculations: residues (1–2) and the disordered C-terminus (70–76) of ubiquitin; residue 1
of GB3; residues 79–81 of DinI (no data). The RMSDs in pdb of the backbone structures are 0.92 Å (residues 3–69), 0.72 Å (residues 2–55), 0.89 Å
(residues 2–78) for ubiquitin, GB3, and DinI, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this paper.)
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peptide chain, and the calculation yielded backbone
structure with similar RMSDs, about 0.8 Å. In addition,
we calculated the backbone structure of GB3 using one
set of RDC data measured from one alignment medium,
and the backbone RMSD relative to the X-ray crystal
structure was about 0.7 Å (Fig. 11).

Protein DinI is relatively difficult case in which numer-
ous errors are found in the phi/psi angles predicted by
TALOS. In addition, a number of planes (planes 11, 13,
33, 45, and 53) have no RDC. For example, the region
spanning residues 11 to 16 is missing about 50% of its
RDC data, and has three errors in the phi/psi angle predic-
tions from TALOS. Therefore, the phi/psi proof and the
backbone structure calculation of this region are challeng-
ing but still manageable. The backbone RMSD of the 3P
structures relative to that of 1GHH is 0.9–1.1 Å in the
top 10% structures accepted based on the RMSDs in RDCs
after regularization (Fig. 11). The RMSD for the segment
of residues 2–53 is 0.61 Å, comparable to 0.79 Å obtained
using MFR+ using two alignment tensors [11].
5. Discussion

Periodicity and planarity, and the intricate relation
between these two and RDCs, form the basis of the current
work and led to the derivation of the explicit analytical
expression of RDCs in terms of the plane orientations in
an equation that allows the alignment tensor axis system
to be determined relative to the molecular frame, using a
set of RDC data measured from a single alignment medium
prior to a 3D structure determination. In the coordinate
system of (dn,qn,cn), the peptide plane orientations are fully
defined by searching through these three-angle spaces and
locating the RMSD minima between experimental and
expected RDCs, aided by the restriction of phi/psi angles.

Both our method and the MECCANO [8] method uti-
lize the peptide plane orientation, but the approaches are
conceptually different. We use the RDC–PP correlations,
which define the direct relationship between the peptide
plane orientation and the RDCs, to calculate the structure.
This relationship originates from the intrinsic correlation
between the periodic secondary structure and the RDCs.
At the end of the data analysis, we extract explicit peptide
plane orientations relative to the alignment tensor axis sys-
tem, using the equation and the RDC data. Consequently,
our method requires only one alignment medium to solve
the structure. In contrast, MECCANO requires two non-
correlated sets of RDCs measured from two alignment
media and uses a least-squares-based search algorithm to
find the best solution. Obtaining more than one non-corre-
lated set of RDCs from different alignment media is achiev-
able in a favorable case, such as ubiquitin [6,7,35], but it
can be rather challenging for a less well-behaved protein.
This difficulty is exacerbated in cases where the structure
is altered by differential interaction between the protein
and various alignment media [36].

Uncertainty in the determined plane orientations may
arise from several sources, including incomplete RDC mea-
surements, deviations from planarity of the peptide plane,
measurement errors in the RDC data, or departure from
the rigid-body assumption. The interpretation of RDCs
for dynamic systems is a subject under investigation
[35,37–43] and the effect of errors in the measurements
has been illustrated in the previous section. We will focus
our discussion here on the first two sources of errors.

Incomplete RDC data sets may result in ambiguity in
the peptide plane orientation. In many favorable cases, this
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ambiguity can be resolved by the neighboring tetrahedral
RDC 1DCaHa (or 1DCaCb

) and available phi/psi angles. On
the other hand, since the 3P program relies on the RDC
data as the main source of restraints for structure determi-
nation, missing a significant number of RDCs results in an
overall low IC and greater uncertainty in defining peptide
plane orientations. In our test cases, the program appears
able to converge with as much as 30% incomplete RDC
data sets (Fig. 8). In addition, because the program inter-
prets RDC in a concerted way in the context of chiral
structure elements, it is able to handle cases where neither
RDCs nor phi/psi angles are available for a residue in the
middle of a structure because of the restraints that the ori-
entation of the chiral structure elements imposes on both
the sides and the chemical bond lineage of the residue.

The 3P program relys on mainly RDC data, supple-
mented by phi/psi angles, to determine protein backbone
structures. The extensive absence of both RDC and phi/
psi angles, such as in totally flexible loops that parse struc-
tured regions, will lead to a large RMSD or may yield no
structure. In such a case, a few distance restraints among
structural segments will minimize the translational errors
[44].

One of the key assumptions of the 3P program is that
peptide groups are planar to the first order of approxima-
tion (Eq. (7)). In practice, the x angle deviates from 180� in
protein structures. We used two methods to estimate the
effect of non-planarity on the accuracy of the individual
peptide plane orientations. First, the fit to the synthesized
RDCs of an a-helix (residues 134–143) of subtilisin without
a superimposed error was used as a sample of peptide x
angles. The mean angular RMSD between the extracted
peptide plane normal vectors and the crystal structure aver-
age peptide plane normal vectors was 2.5�. A deviation of
5.9� was the largest observed for the plane of residues 138–139
(Dx = 6.4�, where Dx is the deviation from the perfect
planarity), and the smallest deviation was 0.3� for plane
of residues 142–143 (Dx = 0.5�). The second method was
running a Monte-Carlo simulation to estimate the error
in the fit peptide plane orientation as a function of the devi-
ation from planarity. The error in the fit plane orientation
was found to increase approximately linearly with Dx,
depending on the orientation of the plane in the alignment
frame. These two results indicate that most peptide planes
in proteins, which are within �6� of planarity, can be well
fit by the method. In some cases of alignment, non-planar-
ity on one plane results in the selection of an incorrect
(degenerate) orientation of the subsequent peptide plane
because it agrees better with the nominal assumed tetrahe-
dral geometry. A significant deviation from planarity is
reflected in the residual errors in T NCaC0 and 1DCaHa . Non-
planar peptide bonds result in deflections in r̂CaN

j and r̂CaC
jþ1

bond vectors from their respective (best-fit) peptide planes,
which in turn result in a structure with deviation in planar-
ity, causing discernable errors in calculating the tetrahedral
angle T NCaC0 . For example, a moderate deviation from pla-
narity in sutilisin resulted in an average deviation of the
calculated tetrahedral angles T NCaC0 related to the plane
of residues (138–139) of 8.1� from the nominal value (Figs.
S3 and S4, Supplementary material). The plane of residues
133–134 has the next-largest non-planarity (Dx = 3�) and
yields a calculated mean tetrahedral angle deviation of 4.5�.

A survey of x angles of the subtilisin structure indicates
that deviations, greater than 7.5�, from planarity occur
almost exclusively in the tight turns at either the beginnings
or ends of a-helices or b-strands, or in non-regular second-
ary structure regions most likely at Gly residues. One rem-
edy for alleviating the problem due to the large deviations
is to restrain structures at these positions with RDC data
directly during the regularization procedure.

Our approach differs in both philosophy and implemen-
tation from approaches such as the molecular fragment
replacement+ (MFR+) [11], even though both methods
use similar information. For example, instead of determin-
ing the tensors (by SVD) of a large group of peptide frag-
ments in a database to find fits to the experimental RDCs
of the target protein segment, we determine the tensor (by
RDC–PP) [25] of a protein directly, without needing an
explicit coordinate. The search for the best fit to a given
set of RDC data within the restricted phi/psi range using
the in-plane RDC periodicity is concerted in terms of plane
orientation and is therefore more efficient than minimizing
the sum of the difference between the measured and
searched individual RDCs [11]. When a sufficient number
of in-plane RDCs is available, simultaneously satisfying
the consecutive in-plane periodicity correlations along a
peptide backbone, which is also constrained by phi/psi,
reduces the possibilities to a small group of discrete ensem-
ble of orientations, whose RMSD is limited only by the
quality of RDC measurements and the accuracy of the
phi/psi.

The 3P program differs from programs REDCAT [45]
and REDCRAFT [46] in a number of aspects. While RED-
CAT is essentially a graphics implementation of the SVD
method, which extracts alignment tensors from RDC data
and pre-existing coordinates [31] and REDCRAFT
determines protein backbone structures using on RDCs
measured in multiple alignment media and numbers of
non-RDC restraints, such as NOEs, J-couplings, etc. for
verification [46]. The 3P program extracts an alignment
tensor from RDCs without a need for pre-knowledge of
protein coordinates and calculates backbone structures
using RDCs measured from a single medium aided with
phi/psi angles.

6. Conclusion

The 3P program uses RDCs measured from one align-
ment medium, together with readily available predictions
of phi/psi angles, to determine protein backbone struc-
tures. The program appears to be robust and can handle
common, difficult scenarios such as those with incomplete
or noisy RDC data, inaccurate phi/psi predictions, or
non-regular covalent geometry.
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7. Software availability

The 3P program package, including testing examples,
tutorials, a tool box, program codes and installation
instructions, can be downloaded from the web site http://
sblweb.ncifcrf.gov/PNAI/files. The 3P tool box includes
the following Python scripts: sim_bRDC.py and
sim_pRDC.py for generating simulated RDC data based
on either bond or peptide plane orientations extracted from
a pdb file, respectively; sim_gauss_err_RDC.py and
sim_rand_err_RDC.py for adding noises to simulated
RDC data using either a Gaussian or a random distribu-
tion, respectively; sim_incomp_RDC.py for generating a
set of given percentage incomplete RDC data set;
PPP_xplor.py for generating peptide plane orientation
restraints from a 3P backbone structure for regularization
by Xplor-NIH. We also include Xplor-nih input scripts for
regularization in directories wherever necessary.
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